广州按摩会馆|广州小姐务
Phone400-615-4535 E-mail[email protected]

技術支持 Technologies

橢偏儀技術

發布者:眺望科技                     發布日期:2018-03-30

he FS-1 uses the power of ellipsometry to optically characterize samples.  In an ellipsometer system, the Polarization State Generator (PSG) emits light with a known polarization, which is obliquely incident on the sample, and the Polarization State Detector (PSD) measures the polarization state of the light reflected from the sample.

1.jpg

The change in polarization state caused by the sample reflection can be defined by the ratio of the sample reflectivity for p-polarized light (Rp), over the sample reflectivity for s-polarized light (Rs).  This ratio is a complex number, which is typically denoted by ρ (rho), and is often reported in terms of the ellipsometric parameters Ψ (Psi) and Δ (Delta), as defined by the following equation.  According to this equation, tan(Ψ) defines the magnitude of the reflectivity ratio for p- and s- polarized light, and Δ defines the phase difference between the reflected p- and s- polarized light.

2.jpg

An alternate representation of the ellipsometric parameters is shown below. The N, C, and S ellipsometric parameters can be calculated in terms of the Ψ (Psi) and Δ (Delta) parameters, assuming the sample is isotropic and non-depolarizing. One of the advantages of the N,C,S representation of the ellipsometric parameters is that if the sample is depolarizing, the degree of polarization P can also be reported.

3.jpg

The ellipsometric parameters measured on the sample (and reported in either the Ψ/Δ or N,C,S representation) can be further analyzed to determine sample properties of interest, such as film thicknesses and optical constants.

 

400-615-4535
400-615-4535
广州按摩会馆 河北排列7 排球体育比分直播 怎么看足球指数 甘肃快3 贵州11选5 188竞彩足球比分首页 河南快赢481 广西快乐双彩 棒球比分规则 山东时时彩 足球指数怎么看 电子体育比分屏 河北十一选五 190aa踢球者即时指数电脑 广西快乐双彩 雪缘园德甲